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Group Cohomology

H∗(G , M)
G a group, M a kG-module, group cohomolgy assigns a graded ring

H∗(G , M) =
⊕

H i = H0 ⊕ H1 ⊕ ...

Examples
H∗(Z/5Z,F5) = S(x) ⊗ Λ(y) |x | = 2, |y | = 1
H∗((Z/3Z)3,F3) = S(x1, x2, x3) ⊗ Λ(y1, y2, y3) |xi | = 2, |yi | = 1
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Why Group Cohomology?

Algebraic Invariant
G ∼= G ′ ⇒ H∗(G) = H∗(G ′)

H∗(G) ̸= H∗(G ′) ⇒ G , G ′ not homomorphic

Low Dimensional Cohomology Groups
H0(G , M) = MG = {m ∈ M|gm = m}

H2 classifies group extensions 0 → G ′ → G → G ′′ → 0

GROUP ACTIONS!
Helps understand actions of groups on sets, spaces, curves, etc.
Varying M, ex: integers, p-adics, modulo prime p,...
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Congruence Subgroups Γ

Definition

projection πn : SL2(Z) → SL2(Z/nZ)

Γ(n) = {1 + nX |X ∈ M2×2(Z)} =
{ (

1 + na nb
nc 1 + nd

) }

Friends Wanted!
Galois/Continuous cohomology
Modular curves
Representation theory of elliptic curves
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Motivation

My case
Want: H∗(SL2(Z/pnZ),Fp) ∀n ∈ N, p−prime.

Spectral Sequences
Let 0 → A → B → C → 0 be a short exact sequence of groups.
A spectral sequence is a computational tool to find H∗(B) with help of H∗(A)
and H∗(C).

Sylow-p-subgroups Sp(n)
Sp(n) Sylow-p-subgroup of SL2(Z/pnZ)
Have short exact sequence

Γ(p)n → Sp(n) → Sp(1)
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Understanding Γ(pn)

The Structure
Γ(p)n is not a subgroup of Γ(p)n+1

Γ(p)n is a p group, i.e. (1 + pnX )p ≡ 1 mod pn

Γ(p)2 is elementary abelian and nonabelian for n > 2. In fact,
Γ(p)2 ∼= (Z/pZ)3

Look at Layers
We reduce mod pn−1{ (

1 + pn−1a pn−1b
pn−1c 1 + pn−1d

) }
= Γ(p)n

p−1 → SL2(Z/pnZ) γn−1−−−→ SL2(Z/pn−1Z)
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The cohomology

Theorem

Let the group Γ(p)n be defined via the short exact sequence below:

Γ(p)n → SL2(Z/pnZ) γn−→ SL2(Z/pZ)

where γn is reduction modulo p. Then ∀n > 1 ∈ N

H∗(Γ(p)n,Fp) = Λ[x1, ..., xp] ⊗ S[y1...., yp]
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Ingredients of Proof

Recall
H∗((Z/3Z)3,F3) = S(x1, x2, x3) ⊗ Λ(y1, y2, y3) |xi | = 2, |yi | = 1

More theory

Γ(p)n is a powerful pro-p group
Γ(p)n is Ω-extendable for all n > 1.
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Continuation of my Project

Theorem
Let p = 3.
H∗(S3(n),F3) = H∗(S3(2),F3) ∀n > 2.

Conjecture
H∗(SL2(Z/3nZ),F3) = H∗(SL2(Z/32Z),F3) ∀n > 2.
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Thank you for listening :)
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